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TURBULENT FLOW OF A GAS SUSPENSATE WHOSE PARTICLES 

INTERACT STRONGLY WITH THE CHANNEL WALLS 

Io V. Derevich UDC 532.529 

Turbulent two-phase gas flows are widely used in power engineering, aviation, and chemi- 
cal engineering. In the pneumatic transport of a powder, one frequently has fairly coarse 
particles, whose dynamic relaxation times may greatly exceed the characteristic time scale 
of the turbulent pulsations. In that case, the pulsating and average motion of the powder 
is substantially different from that for small particles, whose dynamic relaxation times are 
less than or comparable with the time scale of the velocity pulsations in the liquid phase. 
The extent of the pulsating motion for small particles is determined by the extent to which 
the powder is extrained in the turbulent motion and can be estimated in the local-equilibrium 
approximation without considering the collisions of the particles with the channel walls [i]. 
The average and pulsating characteristics for large particles are dependent on the interaction 
with the wails. There are effects from the marked velocity difference between the phases and 
the intense chaotic motion of the powder, where the level of the pulsating motion for the 
powder may greatly exceed that of the particle pulsation in an unbounded space with identical 
turbulence intensity, and this can be explained only on the basis of the collisions between 
inertial particles and the bounding surfaces. The collisions cause the particles to lose 
momentum and to rotate around the points of contact. The Magnus force arising from the rota- 
tion causes rapid transverse displacement [2, 3]. The channel walls in a gas--power system 
thus provide positive feedback, which causes additional pulsations in the powder by comparison 
with turbulent flow in an unbounded space. 

There are two approaches to calculating the characteristics of such flows. Firstly, 
there is direct stochastic simulation, which is based on solving the equations of motion for 
a single particle in a random velocity pattern [2, 5-8]. However, to obtain information on 
the averaged characteristics, it is necessary to calculate many thousands of such paths, 
which consumes considerable time. In spite of the apparent simplicity, the method of cal- 
culating Lagrange paths is not widely used in designing pneumatic transport systems. The 
second method is based on the conservation equations for mass, momentum, and angular momen- 
tum of the particles and the intensity of the turbulent pulsations [3, 9]. Then to close 
the system, it is necessary to derive expressions representing the rate of turbulent momentum 
transport, the angular momentum, and the pulsation energy, and also to substitute boundary 
conditions for the equations for the first and second moments, which incorporate the inter- 
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action with the walls. Formulas have been derived for the turbulent energy transport by the 
powder in a particular case from the equations for the corresponding third moments, with sub- 
sequent use of Millionshchikov's hypothesis on the fourth moments [i0]. It is no simple task 
to formulate the boundary conditions for the conservation equations for the powder. In [9, 
ii], boundary conditions have been derived for the conservation equations for mass, momentum, 
and the second moments of the particle velocity pulsations subject to the condition that the 
particles lose part of their momentum by collision with the wall. The boundary conditions in 
[3] have been written on the assumption of 6 distributions for the velocities and angular 
velocities of the particles incident on the wall, with the boundary conditions containing the 
velocity ratio for the rotation before and after collision, which requires additional empi- 
rical information on the rotational velocities. 

Here is derived a closed equation for the probability density PD in terms of the coor- 
dinates, velocities, and angular velocities of the particles; an equation system is written 
for the first and second moments of the velocity and angular velocity pulsations. An approx- 
imate solution is obtained to the kinetic equation that incorporates terms linear in the 
gradients of the powder characteristics and expressions are derived representing the tur- 
bulent transport of momentum, angular momentum, and the turbulent powder velocity pulsations. 
Boundary conditions are derived for the conservation equations for mass, momentum, angular 
momentum, and pulsation energy, which incorporate the momentum loss and the rapid rotation 
resulting from collision. Calculations are performed on the powder characteristics in horizon- 
tal and vertical channels for rising and descending suspensate flows. 

i. PD Equation and Equation System for the First and Second Moments. We consider the 
flow of a gas suspensate without back reaction from the powder on the characteristics of the 
carrying flow, which corresponds to a flow in which the weight concentration of the particles 
is much less than one. We take the characteristics of the fluid phase as known and consider 
the PD for the particles averaged over realizations of the turbulent flow: 

(~(x, V, f~, t)> = <6(x- Rp)6(V- V~)6(~-  f~p)>. 

Here the following are the equations of motion for a single particle, which describe the 
coordinate Rp, the velocity Vp , and the angular velocity ~p [1-3]: 

drips__ = Vp~ (t), 
dt 

dVps ~ + 
dt - -  (Ui  (Rp, t) v -  "rg~ - -  VpO - -  ~,'~eijh.c2-~k (Uj (Rp, t) - -  Vp~), ( 1.1  ) 

dav~ _ ~ .0.~ (t), 
dt  re3 

in which ~ and zm are the dynamic relaxation times for the velocity and angular velocity, sij k 
is an antisymmetric tensor, Ui(x, t) = (U~(x,t)> ~ ui(x, t) being the velocity of the carrying 
phase, in which the averaged and pulsating components are distinguished, and the value of the 
constant ym is dependent on the velocity of the flow around the particles and is proportional 
to the ratio of the densities of the gas and the particle material, ym - Pg/gp, while gi is 

the acceleration due to gravity. 

For inertial particles, �9 >> T E (T E is the characteristic time scale of the turbulent 
pulsations for the fluid phase), and the velocity pulsations in the carrying phase can be 
represented as a Gaussian random field 6-correlated in time: 

<ui(xl ,  t)ui(x 2, t + s)> = T E ( U i ( X l ,  t )u f l xe ,  t)>5(s), 

Functional differentiation [12] gives us by analogy with [9] a closed equation for the 
particle PD: 

D <0> I D<Vh> <Uh) q- "rgh - -  (Vh> 
Dt + ot  + ,: 

[<-Qd (<u~> 
% 

. 

7 , 
- 

a <~> a <a>> i a I a a <V~> o <r vh 
- -  v~ ax~ ~,~ o~  ao)~ u 0~s <q)> ~ 0% o~ <q)> = 

(1.2) 
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2 = [~o~ <UjUh>- ~]~r @- fOi)<UjUn> ~- ~E~ognljSimh <UrnUl>X 
02 <~> 

D 0 0 
z)--F = 57 + <V~> ~---, u~ = V+ - -  <T4>, o~ = ~.~ - -  Go_d, 

(<iV), <V+), < ~ 5  are the averaged number concentration of the particles, velocity, and angular 

velocity). Equation (1.2) is the Fokker-Planck equation extended to the case of rotating 
particles. From (1.2) we get a system for the first and second moments of the pulsations in 
the velocityand angular velocity: 

a <N> , a 
ot  " ~ ox--- h <N> <vh> = O,  

D <v d I o <~v> <~+vk> <u+> + ~g~ - <v d 
Dt  ~ <N> az a ~: 

- w~jh (<P-k> (<u~> -- <Y~>) - <o+hvj>), 

D <QD i a<N> <m~vk> <~> 

Dt  -r <N> ax h -- ~ ' 

, , 2 o D < ~ >  i o <W> <v~v/,7+> a < v j >  , o <v~>  ( ~ j _ < v ~ v i > )  
Dt T <.~> o~ h r- <v~v++> ox++ : (v~vk> 07+'~+ = u 

++4 = T <,iuj> - -  ~ ~+.+mj [(<~+,> - -  <V~>) <o~+v+> + <_O_+> \ + <u~u+> - -  

TE 

-- <v+,l~> -- <co~v~v~> + T eT++~j~m~ <"mud (<O.,> <.%> F @+r 

D <e)io)~> , I a <N> <o)ia)svh> a <~j> a <.o.i> 2 <~0io)5> ' 
z>t ' <N> o~  +<~o+v~> o~ h +<o+;v~> a . ~ -  % 

o <~+5 <copy,> ~ o <+~> @~v~v~> a <v D u+ r + 

§ ~,~+,s [<~o~o~> (<Urn> - -  <Fro>) - -  <P-D <v,~r - -  <o)m++Vm>l = 

Here the second moments of the pulsations in the velocity and angular velocity of the par- 
ticles <vivj>, <vi~j> are turbulent fluxes of momentum and angular momentum arising as a 

result of the pulsating motion of the powder. The third moments of the pulsations <vivjvk >, 

<mimjVk >, <miVjVk > represent turbulent transport of the intensity of the random particle 

motion. 

To close the system and construct the boundary conditions, an approximate method of 
solving (1.2) is used, The averaged characteristics for the powder vary little over the cross 
section. When one solves the kinetic equation, one can restrict oneself to terms linear in 
the gradients of the averaged parameters for the powder. From (i.i) and (1.2) we have that 
rotation arises only by collision with the channel wall. The zeroth approximation in the solu- 
tion to the kinetic equation is 

i%(x, v, ~, t)> = <N>~o(v)~(~) ,  

% (v) = ]~I (2~e+d-~/2 exp ( v i v i )  

We close the system for the first and second moments in the zeroth approximation and apply a 
procedure to solve (1.2) analogous to the Chapman-Enskog method [13], which gives an approxi- 

838 



mate solution for the PD linear in the gradients of the averaged powder parameters: 

~ ~ (t - 6~) ~'#~ * ( v ~ v ~  - <r (x, v,  ~o, t)> = <N> % t + -y ~,~i%----f - -  2cq---]. 

- -  ~d-) v~ - -  

( i  T , i xt--1 0 <~i> C ~ ( O ) )  

( 1 . 3 )  

This enables one to calculate expressions for the second and third moments of the velocity and 
angular velocity pulsations: 

e <V~> 2 e <Vh'~ ] 

<Vi0))> -= -- ' "co) ] <ViVa> ~xh , <03#35> = 0, 

26i~ + 5il Oai~ 
<t'io~floh> = O, <vivjvh> = -- (5 U 3 r~a~ Ox h , 

<(ozv~vj> = -- § I -1  <vav,,~v~> ~zh 

2. Boundary Conditions. We consider a model for the collision with the surface in which 
the momenta of particles reflected along the y and z axes constitute k n and kt, when the parts 
of the momenta of the incident particles (the y axis is normal to the surface and the x axis 
coincides with the flow direction, while the direction of a reflected particle's momentum 
along the y axis is opposite to the direction of that for an incident one), while the axial 
velocities and rotational velocities of the incident and reflected particles are [1-3] related 
by 

t* t v r., t t ~," ; 

( 2 . 1 )  
5 § 2L~ d ~ - -  kt iO (~ - -  ~t) ~2 5kt § 2 

(Z, 7 ' 0~2 = - -  p ~ '  ~1 = 7 dv ' = 7 

( a  p r i m e  d e n o t e s  a q u a n t i t y  b e f o r e  c o l l i s i o n  w i t h  t h e  w a l l ,  a n d  two  p r i m e s  d e n o t e s  o n e  a f t e r  
collision). 

The PD for reflected particles is related to that for the incident ones by 

t ! 
<dp+(x, V", ~",  t ) > =  d V ~  d V y  ~ dVz  ~ d Q ' z G ( V " ,  f~"; V ,  f l ' ) X  

--co --oo --oo --oo 

n 

x <r (x, V ' ,  ~ ' ,  t)>, VL, > O, 

where the kernel is explicitly dependent on (2.1), which describes the result of collision 
with the surface: 

t 
' " - -  ' . . . .  O" - -  k t V z )  X o ( w ,  n"; v ,  n') = 6 (v~ k,v~) ~ (v~ + knv~) 8 (~zv~ - ~2.-~ 

f,' P; t • ~ ( ~  - ~_v~ - k ~ : ) .  

We calculate the sum of the fluxes of the powder for the incident and reflected par- 
ticles and equate this to the flux in the flow as referred to the surface [9, ii] to get 
the boundary conditions for the normal and axial velocities of the powder, the angular veloc- 
ity, and the intensities of the transverse and longitudinal particle velocity pulsations 
(y = 0): 

2 Oy 

i - -  k,~ [ 2 ~1/:  
<v p  + ~ [ - ~ ( ~ )  = o, 

(V~) = 
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+ ! l  - '  

= 2kncze [ 2 "~al~ 

' " "-~ k n kt "~ ~- kn (i + kt) ~ . ~ , ~ J  <'%>, 

0<%> [ (@ 1 --~,-~,. , . . , ,=  

= - ~ + ~. O- + ~,) + @ ,  [ ~ }  <~>' 

These boundary conditions extend those derived in [9, ii] for the flow of particles in 
rotation resulting from collision with the wall. 

3. Results. The calculations were performed for the stabilized part of the flow in a 
circular tube. A cylindrical coordinate system (r, 8, z) was used, where the conservation 
equations for the momentum, angular momentum, and particle concentration in dimensionless 
variables are 

v,b--++ §  U+~ § 

<~-~)~ ~ 0 - ~ ) ~ +  ~+U) ~ ]  -R+v+ ~ 

~+ = ( ~ - , ] ) : +  + + ~:z R+(v+  +u~)-~,  R+ = _ ~ v  +, 
T, (~yy d U -  

112 1 

j+ [ 2 +~ i - - k n - -  2 ~ d g ( t  /})<N>, 
0 

_ _  4 -  

N <N>/Nm, + --  "c+ d%u 
= Vmig B + d~ ' 

)-~ s t~ -+ ~ ~v.1 ~+=v ,~  S t U + f i ( D ~ - V . ) - ( t + ~ j  i - ~ = o , , ~ , ~ , + U + ,  
g ag j 

in which U = (U>/Ura; ~r = (V>/Um (Um is the mean mass velocity), U + = Um/u + (u+ is the 

dynamic velocity of the fluid phase), R + = Ru+/v (R channel radius), v the kinematic viscosity 

of the gas, T + = Tu$/v; St = TUm/R the Stokes number for the particles~ ~ = ~8R/Um the dimen- 

sionless rotational velocity, Vmig the velocity of the turbulent particle migration caused by 
inhomogeneity in the pulsation energy for the powder phase, J+ = J/u+ the particle flux at the 

channel wall, Nw the concentration of the powder at the surface, y = 1 - r/R; r the radial 

coordinate, and gx = gxR/Um" 

The boundary conditions for (3.1) reflect the flow symmetry at the axis, the lack of 
rotation in the flow of powder at the axis, and the particle rotation arising from collision 
with the wall: 

=1: df~_,,=O,~=O; 
dg 

} = 0 :  
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+ + - [ t - k~kt  - -  ( 3 / ; )  k,., d - -  '~t) + ' : - : "  ] 
2 & 

2kntt+a~ ( 2 + \1/2 
x F .  = - ~ + k . 0 + k , ) + @ ,  ~ 7 % ~ )  fi' 

' : ""~ '4+ + ~ +-7,[ (T T ,,,,q -V i-~T, [~%') j ,a= 
2kn'~lR+ [ 2 + '~11~ 

= - ~ + k,, d + k,) + k ~  ( ~  %~) vx,  

"~2 = "~ (i - -  kt)/7, ~ ---- t0( i  - -  kt)/(Td ), d = dp/R. 

The intensity of the pulsating particle motion in the axial and normal directions is 
given by 

(~ -- ~) .,V ,~ ,~.~ j ~ 

[2R +'  o + (dVx lz ] 
= --[-~-4"- o =  -}- R + U ~  St (~+~, \ @_ / _l' 

v~ T+U+ + ~  st~ +5 ~P~ 
~+ x x  ~ g 

' " L 2R+' + (3.2) 
( t --y)  N dg- d-g J "" --'~ '~y -~"--~" O''~'v := ~ d~y,. 

o+ T+_+ ~'~ r+U~ + ~-, ( ,)-, 
% ~ =  - 7 -  , ~ ,  - ~ +  

~ - . ~ + - - f s t  ~;~ + ;,~ ~ + st(5= ~ ) o  + ~  

+ ~- -~ ,  

in  wh ich  a+ = ~j/u~; e~j = (u~uj>/u~.; T + =  TEu~+/v i s  t h e  d i m e n s i o n l e s s  t i m e  s c a l e  o f  t h e  t u r b u l e n t  
gas  p u l s a t i o n s .  The b o u n d a r y  c o n d i t i o n s  f o r  ( 3 . 2 )  a r e  w r i t t e n  f rom t h e  symmet ry  c o n d i t i o n  a t  
t h e  a x i s  and c o l l i s i o n  w i t h  t h e  w a l l :  

= 1: --=-_da+~ = do+_ = 0; 
dg dg 

l --ken: 2 +~1/2] + 
.~ = i: 1: +%,  + d~ - -  R+ V+ - i 2  t - - ~ " f f - % ' }  j % ,  = 0 ,  

"+~+~ ~~ R+ v+ + t + ~:-----~ o,,) j o+= = o 

We incorporated the dependence of the relaxation times for the translational and rota- 
tional motion on the averaged relative velocity and rotational speed [i, 14]: 

"~ = T O (t -t- R%/60) -1,  c ~ = (t/18) pp/pg d~/v, 

Prep = JUx - -  Vx[dRe/2, Re = 2RUm~v, 

"r~ = ~o,(1~ _}_ Re~/2/7,8)-~, To)~176 

Re,~ = d2~tie/8. 

We estimated Ym from the [15] results: y~ ----6/nCLpg/pp, C L ~ 0.3. The parameters of the 

carrying phase were calculated from a one-parameter turbulence model [16]. The intensity 
of the transverse gas velocity pulsations and the time scale of the energy-bearing pulsa- 
tions are determined by the turbulence energy and the Nikuradze spatial scale LE: 

= = ? ~ L ~ / E  , k  u = O , 2 , T E - - l , 1 6 .  
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Figures 1-5 show calculations on the powder in a vertical cylindrical channel with a 
rising flow (solid lines) or a descending one (dashed lines). The dot-dash lines show the 
characteristics of the carrying phase. The calculations are for the experimental conditions 
in [i Curves 1-4 correspond to particle diameters dp = i00, 200, 400, 800 pm, and k n = 

]o ~ (the experimental data are indicated by the points). There is a close correlation k t = o 
between the pulsating and averaged particle characteristics. Figure 1 shows the particle 
velocity distribution (U 0 is the gas velocity at the axis); the random motion transverse to 
the channel leads to rapid transport of the axial momentum component to the walls, and the 
momentum loss by collision causes considerable averaged phase velocity slip. The collisions 
give the particles rotation ~8 > 0 (Fig. 2). The maximum angular velocity is attained at 
the inner surface of the channel. The rotational velocities for small particles at the wall 
greatly exceed those of large ones, but because of the inertia, the angular velocities of the 
large particles fall less towards the center of the channel. In the flow region where the 
particles run ahead of the gas, the Magnus force is directed towards the surface, while where 
the particles lag behind the carrying phase, the Magnus force is directed towards the axis. 
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Figure 3 shows the particle concentrations in rising and descending flows. The concen- 
tration profile is affected by the turbulent migration, which is caused by the inhomogeneity 
in the pulsation pattern of the particle velocities normal to the surface and is directed to 
reducing the pulsating motion (Magnus force), while also being affected by turbulent dif- 
fusion, which reduces the concentration gradients. Figure 3 implies that the Magnus force 
plays an important part in producing the concentration profile for the larger particles in 
rising flow. The level of the turbulent velocity pulsations normal to the surface is less for 

the large particles than for the small ones (Fig. 4, Uy = <u 2>I/2 Vy = <v~>i/2), while the 
y 

turbulent migration velocity is small because of the homogeneous profile for the pulsation 
energy over thecross section. In the case of descending flow, the increase in the axial 
velocity of a particle at the wall causes an increase in the angular velocity by comparison 
with the lifting flow (Fig. 2), which in turn produces additional normal velocity pulsations 
for the powder (Fig. 4) and reduces the intensity of the axial velocity pulsations (Fig. 5, 

= <u~> ~/2, v x = <v~> I/~ points for dp = 800 ~m). The increase in intensity of the random U X 

particle motion in the cross section is due to greater filling in the angular velocity pro- 
files in descending flow (Fig. 2) and also the more uniform concentration profile (Fig. 3). 
The comparatively high level of pulsating motion for a large particle is obtained onlY when 
one incorporates the generation of random motion as a result of collisions with the walls. 

Figure 6 compares calculations on the particle concentration (dp = 23 Dm) with experi, 
ment [18] for a high-velocity flow, when the effects of the gravitational force on the par- 
ticle motion can be neglected (curves 1-3 correspond to velocities of U m = 98, 144, m/sec). 
A bell-shaped concentration distribution in the channel can be obtained in the calculations 
only when one incorporates the Magnus force. 

A statistical approach thus gives a closed description of the flow of a two-phase gas-- 
solid suspensate in which the particles interact strongly with the channel walls. 
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EFFECT OF FRACTURE RATE ON THE DYNAMICS OF THE INTERACTION 

OF AN IMPACT LOAD PULSE WITH THE SURFACE OF A SOLID 

A. V. Utkin UDC 539.593 

Studies of cleavage phenomena during the reflection of shock waves from the free surface 
of a body [i, 2] provide unique information about the strength properties of materials in 
the submicrosecond range. Under these conditions, however, the time to fracture is com- 
parable with the loading time and as a result the experimental values of the cleavage strength 
of material, which is not a comprehensive characteristic, are not unique; it is thus neces- 
sary to speak of the breaking strength as a function of the strain rate as well as other state 
parameters. A number of papers (see, e.g., [3, 4]) have developed a semi-empirical continuum- 
kinetic model of fracture, which gives an acceptable description of particular cases when used 
in problems of mathematical simulation of shock-wave phenomena. At the same time, information 
must be obtained about the kinetic fracture laws directly from analysis of experimental data. 
Such information in implicit form is contained by the velocity profiles of the surface of 
the test specimen [5]. The fracture of the material after reflection of a shock wave from 
the free surface of a body and the attendant relaxation of tensile stresses give rise to a 
compression wave, a so-called cleavage pulse. Clearly, in the case of instantaneous fracture 
the cleavage pulse should have the steepest leading edge and the largest amplitude. It is 
intuitively clear that a longer time to fracture reduces the slope of the cleavage pulse. A 
prolonged decrease in velocity against the background of its damped oscillations has been 
also observed in experiments. 

Our aim was to analyze wave processes in a fracturing medium upon reflection of a com- 
pression pulse from the free surface and to study the possibility of obtaining data on the 
fracture rate directly from measurements of the velocity profiles of the surface of the 
specimen. 

Formulation and Solution of the Problem. In the acoustic approximation we consider the 
evolution of a triangular compression pulse after its reflection from the free surface of a 
specimen, which develops at negative pressure. We assume that fracture begins when the tensile 
stresses reach the critical value Pc and is characterized by a specific pore volume Vp. The 
total specific volume of the medium is equal to the sum of Vp and the specific volume of the 
solid compoflent Vs: v = Vp + v s . We use the simplest fracture kinetics: the rate of change 

of Vp depends linearly on the pressure P and is zero if~P > 0 and v D = 0. The system of 
hydrodynamic equations, closed by the kinetic equation and the equation of state, has the 
form (in Lagrange's variables) 

Ov 1 au _ ( } ,Ou  __i OP __~_Oup' P :~ ,  P=Po zc2o(l/,o-vm-v~,~ ' ( 1 )  
at ~o~h T + , o ~  - = 0 ,  2 D0CoT ~ 

where  t i s  t h e  t i m e ;  h i s  t h e  L a g r a n g e  c o o r d i n a t e ;  u i s  t h e  mass v e l o c i t y ;  P0 and c o a r e  t h e  
i n i t i a l  d e n s i t y  and t h e  v e l o c i t y  o f  sound ;  and ~ i s  t h e  c h a r a c t e r i s t i c  r e l a x a t i o n  t i m e  o f  
t h e  f r a c t u r e  p r o c e s s ,  c o r r e s p o n d i n g  t o  t h e  b u l k  v i s c o s i t y  ~ = 90c02z~.  I n  t h e  e q u a t i o n  o f  

state the pressure i s  determined from the solid component v s = v - Vp. 

Figure 1 shows the flow pattern in the t-h plane. In region 1 the incident wave and 
the reflected wave do not interact and the dependence of the mass velocity and pressure on 
the coordinates and time corresponds to a triangular compression pulse: 
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